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1. Introduction 
 
This paper is the first one of a series pointing to reach 

an improved design of fiber optic sensors used for various 
applications, mainly aeronautical. Distributed feedback 
fiber lasers (DFB-FL) and distributed Bragg reflector fiber 
lasers (DBR-FL) are the main investigated sensor devices. 
Distributed feedback fiber lasers (DFB-FL) and distributed 
Bragg reflector fiber lasers (DBR-FL) possess certain 
unique properties that make them quite attractive for a 
number of different applications. They are inherently fiber 
compatible, and very simple passive thermal stabilization 
is sufficient to ensure the stability of the laser.  

A number of different active dopants, such as erbium, 
ytterbium, neodymium, and thulium, can be used in order 
to cover different windows of the optical spectrum. These 
features, combined with the ability to define the emitted 
wavelength precisely through the grating structure along 
with the narrow linewidth and low relative intensity noise 
(RIN), make DFB-FL and DBR-FL very advantageous for 
telecommunication applications [1]–[3]. In addition, a 
number of DFB fiber lasers can be configured in a parallel 
array to provide flexibility in pumping conditions and pro-
vide pump redundancy [2], [4].  

Robust single polarization and narrow linewidth of 
DFB lasers are very desirable for sensor systems [5]–[7]. 
Alternatively, DFB lasers can be made to operate in stable 
dual polarization so that simultaneous measurements can 
be carried out [8]–[10]. In addition to the sensing and tele-
com applications, DFB fiber lasers suitable for high-power 
applications have been demonstrated [11]. 

 
 
2. Specification of DFB-FL and DBR-FL sen 
     sor application 
 
An important aeronautical application of fiber optic 

sensors consists in determination of transition zone be-

tween laminar and turbulent flow of air along the wing 
surface. Intermittent regime occurring in-between these 
two regions (transition) is characterized by turbulent bursts 
in laminar flow. 

The basic idea of this type of measurement is to eva-
luate the pressure variation in the two zones: 

1. Laminar flow - relative constant value of air static 
pressure, low frequency (~ 100 Hz) and small amplitude 
(ΔP ~ 1 Pa) pressure variations. 

2. Turbulent flow - larger and nonstationary value of 
air static pressure, higher frequency (~ 10 kHz) and higher 
amplitude (ΔP ~ 10 Pa) pressure variations.  

 
 

 
 

Fig. 1.  Schematic representation of the main investigated 
aeronautical application of DFB-FL and DBR-FL.  
 
 
The main investigated aeronautical DFB-FL and 

DBR-FL sensors application consists in determination of 
the transition zone (line) between laminar and turbulent air 
flow along the aircraft wing surface. The laminar and tur-
bulent boundary layers can be observed in Fig. 1.   

Possible fiber optic “reaction”: linear glass strain de-
formation (glass Young’s modulus of elasticity is E = 50 ÷ 
90·109 N/m2) under air turbulent pressure bursts (deforma-
tions of 10-9 ÷10-8 m) is extremely difficult to measure 
even by optical interferometer methods. In this situation 
micro-bending of fiber optic appears to be more feasible 
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deformation as an effect of turbulent air flow pressure 
bumps. 

Schematic representation of the main investigated 
aeronautical application of DFB-FL and DBR-FL is pre-
sented in Fig. 2. The laminar and turbulent air flow zones 
along the aircraft wing surface are indicated. One possible 
position of the fiber optic sensor can be observed.   

 

 
 

Fig. 2. Schematic representation with few relevant in-
sights of the main investigated aeronautical application 

of DFB-FL and DBR-FL. 
 
 
In Fig. 3 it can be observed that the fiber optic sensor 

is embedded close (0.2 mm depth) to the wing surface. 
The fiber optic sensor is placed into a soft material, like 
paraffin, under an 0.2 mm thick aluminum foil. 

 

 
 

Fig. 3. Insights of one possible way of mounting the 
DFB-FL and/or DBR-FL in the wing for determination of 
transition  zone  between  laminar  and turbulent air flow  
                      along the aircraft wing surface. 

 
 

One possible procedure for reading the fiber optic 
sensor is presented schematically in Fig. 4.  This possible 
procedure is based on precise evaluation of lasing wave-
length, lasing, which depends on the laser resonant cavity 
length. 

 

 
 

Fig. 4. Some insights about the structure of the DFB-FL 
and/or DBR-FL proposed to be used for the determina-
tion of the transition zone between laminar and turbulent  
                     air flow along the wing surface.  

Some additional insights about the structure of the 
DFB-FL and/or DBR-FL proposed to be used for the de-
termination of the transition zone between laminar and 
turbulent air flow along the wing surface are displayed in 
Fig. 5. The possible fiber optic sensor output reading by 
measuring the lasing wavelength shift (Δλ) is indicated. 

It is to be noted the role of pumping wavelength used 
for DFB-FL or DBR-FL. This output reading is applicable 
for both diode pumping wavelengths, namely 980 nm or 
1480 nm. The first one, 980 nm wavelength, is more effi-
cient than the second but has lower saturation intensity. 
The second one, 1480 nm wavelength, seams to be more 
interesting for sensor application because its more ex-
tended linearity response domain.    

An important observation is that the pressure bumps 
of the turbulent air flow can be recorded by DFB-FL or 
DBR-FL in two possible ways: 
- in the Bragg grating zone; 
- in the zone between two successive such Bragg gratings.  

 
 
3. DFB-FL and DBR-FL sensor architecture. 
 
Regarding the Distributed Feedback Fiber Laser 

(DFB-FL) and Distributed Bragg Reflector Fiber Laser 
(DBR-FL) sensors architecture the following are to be 
observed: 
• Both are built using single-mode optical fiber (core 

of 5 - 10 μm diameter and clad of 80 - 100 μm over-
all diameter) 

• Both are built using single-mode optical fiber as ac-
tive medium. The active medium is formed by dop-
ing the core of the optical fiber with erbium ions 
(Er3+) 

The important feature consists in the Bragg grating – 
spatial sinusoidal refractive index variation in and along 
the core of the optical fiber. Bragg grating characteristic 
parameters are: Λ - the wavelength of spatial modulation 
of the refractive index, λB – the Bragg wavelength (de-
fined as 2·neff·Λ, the wavelength of maximum reflection 
coefficient), neff – the effective value of the refractive in-
dex, corresponding to the fundamental mode of electro-
magnetic field propagation into the optical fiber, being 
imposed by the geometric characteristics of the optic fiber)  

 
 

 
 

Fig. 5. The possible fiber optic sensor output reading by 
measuring the lasing wavelength shift (Δλ).  
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DBR-FL means a laser oscillator formed by the opti-
cal fiber active medium placed between two mirrors Bragg 
gratings (distributed reflector); 

DFB-FL means a laser oscillator formed by the optical 
fiber active medium support of the Bragg grating. 

In addition to the structure presented in Fig. 4, some 
additional insights about the structure of the DFB-FL 
and/or DBR-FL proposed to be used for the determination 
of the transition zone between laminar and turbulent air 
flow along the wing surface are displayed in Figs. 6 and 7.  

 

 
 

Fig. 7. The possible fiber optic sensor output reading by 
measuring the lasing wavelength shift (Δλ).  

 
 

4. DFB-FL theory 
 
Traditionally, there have been three main DFB laser 

cavity designs that offer different performance and distinc-
tive operational characteristics, presented in the followings. 

It was recently shown that the classic parametric op-
timization approach for a DFB laser, i.e., the definition of 
the optimum resonator geometry and dimensional values, 
is analogous to Rigrod optimization [18] of reflectivities in 
Fabry–Pérot laser cavities of fixed length. It can also be 
shown that it is possible to further improve the DFB laser 
efficiency by increasing the effective cavity length without 
changing the total device length and optimum reflectivities, 
using a step-apodized profile. 

Both optimization approaches are parametric in nature. 
The main cavity features are defined a priori, and their 
parameters are continuously varied until a maximum effi-
ciency is reached. However, neither approach guarantees 
that the ultimate, i.e., maximum possible, efficiency for 
the given medium has been achieved. In this paper, a dras-
tically different approach is followed. 

New method follows an “inverse scattering” philoso-
phy in that, for a given medium and pumping arrangement, 
it first derives the maximum possible efficiency and the 
use of the developed algorithm defines the required gener-
alized DFB cavity. This is achieved without any signifi-
cant a priori assumptions about the grating characteristics. 
Taking into account the local pump power, the method 
relies on the calculation of the optimum intracavity signal 
distribution that results at maximum pump-to-signal con-
version at every point along the cavity. 

Using this information, the developed algorithm cal-
culates the required grating strength distribution that re-

sults in the desired optimum signal, pump, and gain distri-
bution. 

 
 

Fig. 8. Refractive index profile for conventional DFB           
laser designs. The classic design and two-wavelength  

bidirectional operation.   
 
 

The classic design and two-wavelength bidirectional 
operation is displayed in Fig. 8. It consists of a uniform 
refractive index grating, with constant amplitude and con-
stant period, incorporated in an active medium. This type 
of DFB laser operates at two fundamental longitudinal 
modes at different wavelengths, corresponding to the 
edges of the grating bandgap, and gives symmetric output 
powers from both ends, which are equally divided between 
these two modes [12]. Such a cavity provides dual-
wavelength bidirectional operation. 

 
 

 
 
 

Fig. 9. Refractive index profile for conventional DFB la-
ser designs. Symmetric -phase shifted design and single-

wavelength bidirectional operation 
 
 
Fig. 9 shows the symmetric-phase shifted design and 

single-wavelength bidirectional operation. In practice 
however, single-wavelength operation is desirable. This is 
achieved by introducing a π–shift in the spatial phase of 
the grating [13]–[15]. If the phase shift is located in the 
middle of the grating due to the symmetry of the cavity, 
the output powers at both ends are equal. Such a cavity 
provides single-wavelength operation, coinciding with the 
grating Bragg wavelength, and bidirectional operation.
  

 

 
 

Fig. 10. Refractive index profile for conventional DFB 
laser designs. Asymmetric π-phase-shifted design and 

single-wavelength unidirectional operation. 
 
 

Asymmetric π-phase-shifted design and single-
wavelength unidirectional operation is shown in Fig. 10. In 
addition to single-wavelength emission, unidirectionality 
is a very desirable feature of high-performance lasers. By 
placing the phase shift asymmetrically with respect to the 
grating center, as shown in Fig. 1(c), larger output power 
is obtained from the shorter end [10], [16]. In this asym-
metric design, the maximum output power from the de-
sired end is obtained for a particular phase-shift position 
and coupling coefficient value. Optimum values of pa-
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rameters and are found by varying them over a defined 
range, either by simulation or by experiment. 

 

 
 

Fig. 11. Standard asymmetric DFB-FL structure. 
 
 

Standard asymmetric DFB-FL structure is illustrated 
in Fig. 11 and 12. The optimum position of the π-phase 
shift position (zp) can be observed. D1 and D2 represent the 
“penetration” depth of electromagnetic field into the Bragg 
grating zones. 

 

 
 

Fig. 12. Standard asymmetric DFB-FL structure. Leff 
represents the sum of the electromagnetic field penetra-

tion depth into Bragg gratings. 
 
 
In Fig. 13 is presented Apodized standard asymmetric 

DFB-FL structure. Leff represents the sum of the electro-
magnetic field penetration depth into Bragg gratings. Apo-
dization consists in modification of refractive index spatial 
modulation depth (amplitude). 

 

 
 

Fig. 13. Apodized standard asymmetric DFB-FL structure. 
 
 

The standard coupled-mode equations for counter-
propagating fields are used (see, e.g., [20]). The electric 
field (E) is the sum of two counterpropagating fields (A 
and B). 

The forward-propagating field amplitude equation of 
propagation is given by equation: 

 

( ) ( ) ( ) ( ) ( ) ( )ziezBzzAz
dz

zdA Γ+= κα      (1) 

 
The backward-propagating field amplitude equation 

of propagation is: 
 

( ) ( ) ( ) ( ) ( ) ( )ziezAzzBz
dz

zdB Γ−+−= κα         (2) 

 
where A(z) is the amplitude of the forward-propagating 
field, B(z) is the amplitude of the backward-propagating 
field, ( ) ziezA β− represents the envelope of the forward-

propagating field, ( ) ziezB β  represents the envelope of the 
backward-propagating field while β is the unperturbed 
waveguide mode. 

A schematic representation of coupled-mode proce-
dure/method, used for numerical evaluation of DFB-FL 
structure is presented in Fig. 14. 
 

 
 

Fig. 14. Schematic representation of coupled-mode pro-
cedure/method 

 
Designating by α (z) the net field gain including the 

background loss and φ (z) the Bragg grating phase, the 
spatial phase factor/coefficient Γ (z) will be given by this 
equation: 

 
( ) ( ) ( )zzz φβ −=Γ 2   (3) 

 
The equation defining the Bragg grating phase φ (z) is: 
 

( ) ( )
*

0
*

2 dz
z

z
z

∫ Λ
=

πφ   (4) 

 
where Λ (z) represents the local grating period. The aver-
age signal intensity definition is: 
 

( ) ( ) ( )zBzAzS 22 +=     (5) 
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while the definition of the intensity difference between the  
counterpropagating fields is: 
 

( ) ( ) ( )zBzAzD 22 −=     (6) 
 

The intensity difference D(z) can be expressed as: 
 

( ) ( ) ( ) ( ) **

0

*20 dzzSzDzD
z

⋅+= ∫α   (7) 

 
The standard coupled-mode propagation equations for 

counterpropagating fields are can be manipulated to pro-
vide expressions for k (z), the coupling coefficient of the 
electromagnetic field: 

 

( )
( ) ( ) ( )

( )( ) ( ) ( )zDzSz

zzD
z
zdS

zk
22cos

2
−Γ

−
=

α
  (8) 

 
The usual DFB laser boundary conditions are: 
 

A(0) = B(L) = 0                (9) 
 
The new/transformed DFB laser boundary conditions 

are: 
D(0) = -B2(0) = 0 

D(L) = A2(L) = S(L) 
 

These boundary conditions represent the basis of our 
design method. 

Given S(z), α(z) and Λ(z), we can use them to find 
D(z) and then the required coupling coefficient distribution 
can be calculated. 

 
n (z) = n0 + Δn (z)·cos (φ (z)) (10) 

 
The coupling coefficient defines the amount of the pe-

riodic perturbation required. If this perturbation is sinusoi-
dal the varying refractive-index modulation in the form is 
defined by the above equation. n0 is the effective refractive 
index and Δn is the modulation amplitude. 

The reflection coefficient of a grating with constant 
gain at the Bragg wavelength is: 

 
( )

( ) ( )LL
Lkr

γαγγ
γ
sinhcosh

sinh
⋅−⋅

⋅−
=  (11) 

 
Here γ  coefficient is 22 αγ += k .  
The approximation of reflection coefficient of a grat-

ing with constant gain at the Bragg wavelength is given by 
( )kLr tanh−≈ . 

The necessary condition for the validation of the 
above equation is α « k. 

The reflectivity of the Bragg grating is equal to the re-
flectivity of a passive grating with no gain: 

 

( )kLrR 22 tanh≈=   (12) 
 
Due to the distributed nature of the reflection process 

in gratings, the incident wave penetrates into the grating 
before reemerging at the front end. It refers to the case of 
the case of constant gain and at the Bragg wavelength: 

( )
( ) ( )

( ) ( )
( )

k
r

k
kLD

LL

L
LL

LL
D

22
tanh

tanhtanh

tanh
cosh

1tanh

2
1

2

2
2

=≈

⋅+⋅

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅=
γγγα

γ
γγ

γα

 

 
In the case of a phase-shifted DFB laser, the total 

length of effective cavity in which the fields are circulat-
ing is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≈+=

2

2

1

1
21 22 k

r
k
r

DDLeff             (13) 

D1 and D2 are the penetration depths into the Bragg 
grating segments on the left-hand side and on the right-
hand side of the phase shift, respectively.  

In the case of a uniform refractive index profile, the 
coupling coefficient is constant. 

 
 
5. DBR-FL reflector theory. 
 
A mode propagating on a straight fiber or waveguide 

fabricated from non-absorbing, non-scattering materials 
will in principle propagate indefinitely without any loss of 
power. However, if a bend is introduced, the translational 
invariance is broken and power is lost from the mode as it 
propagates into, along and out of the bend. This applies to 
the fundamental mode in the case of single-mode fibers 
and waveguides and to all bound modes in the case of bent 
multimode fibers or waveguides.  

Two types of optic fiber bend losses can be consid-
ered [20 - 22]: 

- Transition loss is associated with the abrupt or rapid 
change in curvature at the beginning and the end of a 
bend; 

- Pure bend loss is associated with the loss from the 
bend of constant curvature in between the optic fiber. 

The transition loss can be described by an abrupt 
change in the curvature k from the straight waveguide (k ~ 
0) to that of the bent waveguide of constant radius Rb (k = 
1/Rb). The fundamental-mode field is shifted slightly out-
wards in the plane of the bend, thereby causing a miss-
match with the field of the straight waveguide, as pre-
sented in Fig. 15. 

The fractional loss in fundamental-mode power, δP/P, 
can be calculated from the overlap integral between the 
fields. Within the Gaussian approximation to the funda-
mental mode field and assuming that the spot size s and 
core radius or half-width ρ are approximately equal, where 
V is the fiber or waveguide parameter and D is the relative 
index difference this gives: 
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2

2

2

4

16
1

bR
V

P
P ρδ

⋅
Δ

⋅≈   (14) 

 
Minimizing transition loss can be achieved by consid-

ering a number of techniques for significantly reducing 
transition loss. In the case of planar waveguides it is often 
possible to fabricate the bend so that there is an abrupt 
offset between the cores of the straight and bent wave-
guides in the plane of the bend. In Fig. 15 this can be seen 
as being equivalent to displacing the bent core downwards 
so that the two fundamental-mode fields overlap. Alterna-
tively, if a gradual increase in curvature is introduced be-
tween the straight and uniformly bent sections, the funda-
mental field of the straight waveguide will evolve ap-
proximately adiabatically into the offset field of the uni-
formly bent section. 

 

 
 

Fig. 15. Outward shift in the fundamental-mode electric 
field on entering a bend. 

 
 

 
 

Fig. 16. Schematic of the bending effect of a fiber laser. 
 
 
The pure bent loss is defined by the fundamental 

mode continuously optical power loses when propagating 
along the curved path of the core of constant radius Rb. It 
is assumed that the cladding is essentially unbounded and 
not affected by the fiber optic bent, keeping a constant 
cladding refractive index value, ncl. The radiation loss in-
creases rapidly with decreasing bend radius and occurs 
predominantly in the plane of the bend; in any other plane 
the effective bend radius is larger and hence the loss is 

very much reduced, as presented in Fig. 16. It has to be 
observed that the phase velocity anywhere on the modal 
phase front rotating around the bend cannot exceed the 
speed of light in the cladding. Hence, beyond radius Rrad 
the modal field must necessarily radiate into the cladding, 
the radiation being emitted tangentially. The interface be-
tween the guided portion of the modal field around the 
bend and the radiated portion at Rrad is known as the radia-
tion caustic, and is the apparent origin of radiation. Be-
tween the core and the radiation caustic, the modal field is 
evanescent and decreases approximately exponentially 
with increasing radial distance from C. As the bend radius 
increases, the radiation caustic moves farther into the 
cladding, and the level of radiated power decreases. Rrad 
can be defined by the equation: 

cl
rad n

CR
⋅Ω

=    (15) 

 
The present theoretical analysis is developed by con-

sidering step-index optical fibers (with a step profile of the 
refractive index). In terms of the core and cladding modal 
parameters U and W, respectively, relative index differ-
ence Δ, core radius ρ, fiber parameter V and the bending 
radius Rb, an approximate expression for γ for the funda-
mental mode of a step-index fiber has the form [20 - 22]: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−= 2

3

2

2

3
4exp

2 V
WR

U
WV

R
b

b ρρ
πργ    (16) 

 
where Rb is necessarily large compared to ρ because it is 
not possible to bend a fiber into a radius much below 10 
mm without breakage. The pure bend loss coefficient is 
most sensitive to the expression inside the exponent be-
cause Rb and ρ. Loss decreases very rapidly with increas-
ing values of Rb or Δ or V (since W also increases with V), 
and becomes arbitrarily small as Rb tends to infinity. 

 
 
6. Er3+ doped fiber amplifier theory 
 
In this section we will develop and review the funda-

mentals needed to model an important issue of DFB-FL 
and DBR-FL namely the laser signal gain in erbium-doped 
fiber amplifiers. We will build on this foundation, to per-
form gain and noise modeling of the amplifiers. The un-
derpinning of the gain process consists of coupled atomic 
population and light flux propagation equations. We will 
treat the three-level system appropriate for erbium-doped 
fiber amplifiers at 1.5 mm, We will discuss calculations of 
the gain in both the small signal and saturation regimes to 
reach an intuitive understanding of the gain process. Then 
we will show how the three-level system can be reduced, 
with certain assumptions, to an equivalent two-level sys-
tem. The importance of the absorption and emission cross 
sections, and the difference between the two at a given 
transition wavelength, will be highlighted. We will cover 
the concept of the overlap parameter, representing the 
geometric overlap between the transverse erbium ion dis-



1642                                                                                I. Lancranjan, S. Miclos, D. Savastru 
 

 

tribution and the transverse profile of the light intensity. 
We will then outline the importance of amplified stimu-
lated emission and the fundamental mechanism by which 
it is intertwined into all aspects of the amplification proc-
ess. Finally, we will discuss analytical models of the er-
bium-doped fiber. 

 
 
Three-Level Rate Equations 
 
The most simple treatment of the erbium-doped fiber 

amplifier starts out by considering a pure three-level atom-
ic system. Most of the important characteristics of the am-
plifier can be obtained from this simple model and its un-
derlying assumptions.  

 
Setting Up the Three-Level Rate Equations System 
 
We consider a three-level system as depicted in Fig. 

17, with a ground state denoted by 1, an intermediate state 
labeled 3 (into which energy is pumped), and state 2. Since 
state 2 often has a long lifetime in the case of a good am-
plifier, it is sometimes referred to as the metastable level. 
State 2 is the upper level of the amplifying transition and 
state 1 is the lower level. The populations of the levels are 
labeled N1, N2, and NS. This three-level system is intended 
to represent that part of the energy level structure of that is 
relevant to the amplification process. To obtain amplifica-
tion, we need a Er3+ population inversion between states 1 
and 2, and since state 1 is also the ground state, at least 
half of the total population of erbium ions needs to be ex-
cited to level 2 to have population inversion. This raises 
the threshold pump power needed for amplification and is 
a known drawback of three-level laser and amplifier sys-
tems. One can take particular advantage, in the case of the 
erbium-doped fiber amplifier, of the fact that the light 
fields are confined in a very small diameter. 

 

 
 
Fig. 17. The Er3+ ions characteristic three-level system 
used for numerical simulation of the amplifier model. 

 
 
The transition rates between levels 1 and 3 are propor-

tional to the populations in those levels and to the product 
of pump flux ϕp and pump radiation absorption cross sec-
tion σp. The transition rates between levels 1 and 2 are 

proportional to the populations in those levels and to the 
product of signal flux ϕs and signal radiation cross section 
σs. The spontaneous transition rates of the Er3+ ions (in-
cluding radiative and nonradiative contributions) are given 
by Γ32 and Γ21. 

In Fig. 18 is presented the energy level structure of 
Er3+ ions. The levels with energy higher than that of 4I13/2 
level form the pump band. The 4I15/2 level forms the 
ground laser level. The 4I13/2 level forms the upper laser 
level. 

The absorption spectrum of the Er3+ used as glass dop-
ing is shown is Fig. 19. The maximum absorption wave-
length of ~980 nm and ~1480 nm can be observed.   

The variation of Erbium upper laser level 4I13/2 life-
time versus Er3+ concentration is presented in Fig. 20. For 
the optical fiber active media of interest, this lifetime is 
about ~10 ms. 

 
 

 
 

Fig. 18. Energy level structure of Er3+ ions. 
 
 

 
 

Fig. 19. The absorption spectrum of the Er3+ used as 
glass doping. 
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Fig. 20. The variation of Erbium upper laser level 4I13/2 
lifetime versus Er3+ concentration.  

 

 
 

Fig. 21. The nonradiative transition rates of the Er3+ ions 
energy levels of the pump band to the upper laser level. 
 

 
 

Fig. 22. The spectral distribution of emission cross sec-
tion of Er3+ ions.  

 
7. Numerical simulation results. 
 
Two numerical simulation procedures were used: 

- one relaying on  MATLAB - MuPAD software package, 
based on the above mentioned equations; 

- the second one relaying on COMSOL software packages. 
Numerical simulations were performed for optical fi-

ber with and without doping with erbium ions (Er3+). No 
significant differences were observed for doped or un-
doped optical fibers. The numerical simulations were per-
formed using 1.550 µm as the laser wavelength. 

In the first stage, transition loss was simulated. Using 
Eq. (14) relative input power variation was calculated as: 

 

2

2

2

4

16 b
rel R

VP ρ
⋅

Δ⋅
=   (17) 

 
where ρ = 5 µm is the core radius, Rb = 5 mm is the radius 
of curvature, while Δ – relative index difference and  V –
modal parameter are calculated as it follows: 
 

2

22

core

cladcore

n
nn −

=Δ   (18) 

222
cladcore nnV −

⋅
=

λ
ρπ   (19) 

ncore = 1.4457 is the refractive index of the core, with a 
diameter of 10 µm, nclad = 1.4378 is the refractive index of 
the cladding with an external diameter of 80 µm, while λ = 
1.55 µm denotes the wavelength. 

Fig. 23 illustrates the variation of Prel vs. Rb. 
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Fig. 23. The variation of the relative input power against 
the radius of curvature.  

 
The numerical simulation performed using COMSOL 

Multiphysics is aiming to obtain an insight on the laser 
intensity distribution across the transverse section of the 
optic fiber. The option 2D was used for the Space Dimen-
sion. Then the RF Module -> Perpendicular Waves -> 
Hybrid-Mode Waves -> Mode analysis options was used. 
The geometry of the transverse optical fiber cross section 
was developed considering realistic parameters. Elliptical 
deformation of the optical fiber was considered in order to 
resemble the bend.  

Only numerical simulation of single mode optical fi-
ber was considered. The developed geometry of the stud-
ied optical fiber was as realistic as possible. Nevertheless 
only axis symmetric optic fiber was considered. This 
means that, at this stage of development of DFB-FL and 
DBR-FL numerical simulation the point-by-point descrip-
tion of transverse fiber optic profile was neglected. In the 
furure stage of development this more realistic geometry 
will be considered. 
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Fig. 24. The numerical simulated time averaged laser 
power flow across the transverse section of a single mode 
optical  fiber  with  a  core of 10 μm diameter and a clad 
                    ding of an overall 80 μm diameter. 

 

 
 

Fig. 25. The numerical simulated time averaged laser 
electric field distribution into the transverse section of a 
singlemode optical fiber with a core of 10 μm diameter  
          and a cladding of an overall 80 μm diameter. 
 

 

 
 

Fig. 26. The numerical simulated time averaged laser 
power flow across the transverse section of a single mode 
optical fiber with a core of 8.82 μm and 11.33 μm axes  
              and a clad of 70.59 μm and 90.67 μm axes. 
 

 
 

Fig. 27. The numerical simulated time averaged laser 
electric field distribution into the transverse section of a 
singlemode optical fiber with a core of 8.82 μm and 
11.33 μm axes  and  a  clad  of  70.59 μm  and  90.67 μm  
                                           axes. 

 
The procedure tried during numerical simulation con-

sists in considering the laser beam propagation along the 
bending such as the optical fiber appears as of an elliptical 
cross section. The deformation was considered by impos-
ing a mechanical stress/pressure on the external surface of 
the plastic protection layer deposited on the glass cladding. 
The deformation is expressed in µm. The deformed di-
mensions of the glass clad and core (the ellipse axes) are 
calculated as the density is constant. The maximum value 
of the considered plastic layer deformation (denoted as 
strain) was of 20 µm. 

 

 
 
Fig. 28. Variations with strain [mm] of maxim laser field 
power flow, maximum (Emax) and minimum (Emin) values  
                               of laser electric field. 

 
 

8.   Conclusions 
 
The results of the DFB-FL sensor simulation proves 

that we obtained a realistic model of the sensor. The ef-
fects of the mechanical deformation (bending the optical 
fiber) were put in evidence. Figures 24-27 reveal that im-
portant modifications in laser power flow and electric field 
distributions appear as effect of microdeformations applied 
to the studied optical fiber.   
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The presented results concerning the numerical simu-
lation of DFB-FL and DBR-FL will be further developed. 
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